GAN(生成对抗网络)是一种机器学习模型,由生成器和判别器组成。生成器的目标是生成逼真的样本,而判别器则要尽可能准确地区分真实样本和生成样本。
下面是一个使用TensorFlow 2.0实现简单的GAN网络的代码示例:
import tensorflow as tf
from tensorflow.keras import layers
# 定义生成器模型
def build_generator():
model = tf.keras.Sequential()
model.add(layers.Dense(256, input_shape=(100,), activation='relu'))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(784, activation='tanh')) # 输出维度与数据维度相同(例如MNIST图像)
return model
# 定义判别器模型
def build_discriminator():
model = tf.keras.Sequential()
model.add(layers.Dense(512, input_shape=(784,), activation='relu'))
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid')) # 输出为二进制分类结果(真或假)
return model
# 初始化生成器和判别器
generator = build_generator()
discriminator = build_discriminator()
# 定义损失函数和优化器
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
# 定义生成器损失函数
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
# 定义判别器损失函数
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
# 定义生成器和判别器的优化器
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# 定义训练过程
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, 100])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
# 训练GAN模型
EPOCHS = 50
BATCH_SIZE = 128
for epoch in range(EPOCHS):
for batch in dataset:
train_step(batch)
这只是一个简单的示例,实际上GAN网络可以有很多变种和扩展。具体使用哪种架构和损失函数取决于任务需求。
内容由零声教学AI助手提供,问题来源于学员提问